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Agenda

e Extra Credit Project

* Midterm demo

* Function objects

* Functional programming
* How function calls work
* Recursion

° Dic’[ionaries and hin’[s A moose once bit my sister. Well, actually it wasn't a

moose, it was a goose. And it wasn't my sister,
because | don't have a sister; it was me.

* Python factoid of the day
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Extra Credit Project

* 50 (Midterm) Bonus Points
 Will be difficult
* Will require 5 minute presentation to class

e Sitill interested?
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Midterm Demo
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Big1 f statement solution:
Function Objects

* |n python, functions can be objects just like anything else

— Pass to other functions

— Store in variables

Oap

e | ef

Think of function names as variables that hold functions

ol y(function, argunents)

s use this to clean up the midterm even more

— store an add function in a dictionary under key '+

— use apply to call the function with arguments to add
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Functional Programming: map

newLst = nap(function, |st)

# What map does
newLst = []
for rtemin |st:

newlLst . append( appl y(function,item)
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Functional Programming: map

>>> def tines2(a):

return a*2
>>> map(tines2, [1,7, 2])
[ 2, 14, 4]

07/17/2006 EECS 12: Lecture 5
Mark E. Phair



Functional Programming: r educe

result = reduce(function, [|st)

# what reduce does
result = apply(function, |st[0:2])
for itemin Ist[2:]:

result = apply(function,\
[result, 1ten])
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Functional Programming: r educe

>>> def add(a,b):

return a+b

>>> reduce(add, [1,2,3,4])
10

07/17/2006 EECS 12: Lecture 5
Mark E. Phair



Functional Programming: f1 | t er

newlLst = filter(function, [|st)

# what filter does
newLst = []
for rtemin |st:
| f apply(function, [i1ten]):
newlLi st . append(item
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Functional Programming: f1 | t er

>>> def even(n):

return n%Q2 ==
>>> filter(even, range(bh))
[0, 2, 4]
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Let's explore:
summing squares of odd numbers

 Using reduce, map, and filter, create a function that sums
the squares of the odd numbers from 0 to n

* functions needed:
- sumEvenSquares(n)
— add(x,y)
— square(x)
- isEven(x)
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funcl(b, c)
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How Function Calls Work
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funcl(b, c)

func2(b, c)
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How Function Calls Work
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funcl(b, c)

func2(b, c)
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How Function Calls Work

a = func(5, 2)

b =5

cC = 2
return fﬁﬁéZ(b+1,c)

b =6

cC = 2

return [expr]
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How Function Calls Work: Recursion

func(b, c)
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How Function Calls Work: Recursion

func(b, c)

func(b, c)
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a = func(5, 2)

b

5
C 2

return func(b+l, c)
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How Function Calls Work: Recursion

func(b, c)

func(b, c)
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a = func(5, 2)

b

5
C 2

return func(b+l, c)

b 6
C 2

return [expr]
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Forget the “Leap of Faith’

* The book describes a “leap of faith” about recursion which
IS not required

e Recursion can be understood and believed with induction

* |nduction has two steps

— Show a base case to be correct
— Show that if it is true for some 1 , then it is true fori1 +1
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Inductive Proof Example: Factorial

Claim: The factorial function below yields the correct result
when given a positive integer as input.

def factorial (n):
“Conputes nl”
If (n ==0or n==1): return 1
el se: return n * factorial (n-1)
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Step 1: Base Case

A base case tells us how to start the induction. Equivalently,
it tells us where the recursion ends.

def factorial (n):

“Conputes nl”

el se: return n * factorial (n-1)
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Step 2: Induction Step

The induction step tells us how to progress from one stage
to the next. In the case of induction, n is getting larger.
In the case of recursion, n is getting smaller.

def factorial (n):
“Conputes n!”
If (n==0o0or n==1): return 1

else: return n * factorial (n-1)
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Step 2: Induction Step (cont)

Assuming that it works for i, show that it works for i+1
def factorial (n):

else: return n * factorial (n-1)

Leti = n-1.Assumethatfactorial (1) yieldsi!,
which means that f act or 1 al ( n- 1) Is correct.

Now, show that it works for 1 +1==n:
(1+1) * (i1!') == (1+1)! (by definition)

n * factorial(n-1) == factorial (n)
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Caveat Recursor

* Beware of infinite recursion: caused by making mistakes
in the base case

* Because of the ways function calls work, recursion can
run into performance problems

— “Function call overhead”
— Tail recursion can help (recursive call is last thing in function)
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Dictionaries and Hints

* For functions that do not depend on outside data
structures (e.g., “Mathematical functions”), we can use
hints to speed them up

 Calculated values can be stored in a dictionary
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Fibonacci Example
def fib(n):

Conput es Fi bonacci sequence
wi th bases fib(0)=0,fib(1)=1"""

| f n ==
return O
elif n ==
return 1
el se:

return fib(n-1) + fib(n-2)
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Fibonacci Example: With Hints
fibHnt = {0:0, 1:1}
def fib(n):

“”" Conput es Fi bonacci sequence
wi th bases fib(0)=0,fib(1)=1"""

I f fi1bH nt.has _key(n):
return fibH nt|n]
el se:
return fib(n-1) + fib(n-2)
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Python factoid of the day: gl obal

The gl obal keyword tells python to use an existing global
variable instead of creating a new local one on
assignment.

nyD = {}
def doSonet hi ng():
gl obal nyD

nyD = {'cow :' Mbo!"'}

If you are using it often, then you are abusing it. Global
variables tend to be harmful
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