EECS 12: Lecture 8
Inheritance, | anbda,
and List Comprehensions

Mark E. Phair
mphair@gmail.com
UC Irvine EECS

July 26th, 2006

Agenda

* Magic number rant

* [nheritance

*| anbda

e List Comprehensions

* Python factoid of the day

| am lambda, king of the functions!
Pull the other one!

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Magic Number Rant

* Magic numbers: unexplained constants in the middle of
the code

 SHOULD NEVER BE USED

— Atthe VERY LEAST: comment it

— Even better: Assign it to a variable at the beginning of the file...
Conventionally, NAME_IT_LIKE_THIS

* Mostly imutable things like strings, ints, floats

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance

e classes can be derived from other classes, this is called
Inheritance

* Think of it like a family tree of a class

e Plant

— Fruit

* Apple

* Orange
- Vegetable

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance (continued)

Plant <---- Base class for Fruit, Vegetable
Fruit <----- child class of Plant, base of Apple
Apple <-mmmmee child class of Fruit
Orange <mmmmee child class of Fruit
Vegetable <----- child class of Plant

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance (continued)

class Plant: pass
class Fruit (Plant): pass

class Apple (Fruit): pass
class Orange (Fruit): pass

cl ass Vegetable (Plant): pass

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance (continued)

cl ass Pl ant:
def _1nit_ (self):

sel f. hasBeenWat ered = Fal se
sel f.eaten = Fal se

def water(self):
sel f. hasBeenWat ered = True

def eat(self):
print 'Eaten.’
sel f.eaten = True

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance (continued)
class Fruit (Plant):

def eat(self):
| f sel f. hasBeen\Wat er ed.:
print 'Yunmy! Fructose!'
sel f.eaten = True
el se:
print "No way! It's all dry!"

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

Inheritance (continued)

= Pl ant ()

D
0. eat ()

= Fruit()
.eat ()
.wat er ()
.eat ()

07/26/2006

Eat en.

No way!

Yunmy!

EECS 12: Lecture 8
Mark E. Phair

|t's all

Fruct osel

dry!

Inheritance (continued)
cl ass Vegetable (Pl ant):

def eat(self):
| f sel f. hasBeenWat er ed:

print """|'ve eaten ny
veget ables... can | have dessert
nOV\[?" 1 11
sel f.eaten = True
el se:

print "No way! It's all dry!"

07/26/2006 EECS 12: Lecture 8 10
Mark E. Phair

D
D

< < < <

Inheritance (continued)

= Pl ant ()

.eat ()

= Veget abl e()

.eat ()
.wat er ()
.eat ()

07/26/2006

Eat en.

No way! It's all dry!

| ' ve eaten ny
veget ables... can |
have dessert now?

EECS 12: Lecture 8 11
Mark E. Phair

Let's explore

* Create a base class called Ani mal that keeps track of

whether or not

it has been fed (you can feed it with the

f eed() method), and has a makeSound() method

that just says °

e Create two chi

'm an Animal!”

d classes, Cowand Pi g, that will make

the sounds “Moo!” and “Oink!” only if they have been fed.

07/26/2006

EECS 12: Lecture 8 12
Mark E. Phair

Why Inheritance?

Mayjor reason: polymorphism

If you assume that everything in the list will either be a
Pl ant or some subclass (child class) of Pl ant (e.g.,
Fr ui t), then you can do things to all of them that you
can do to all Pl ant s without having to worry about

which type of Pl ant itis.

07/26/2006 EECS 12: Lecture 8 13

Mark E. Phair

Special Note About Children

» We've used the term child to refer to two different things:

— Child classes are classes that have been derived from a base
or parent class

— Child nodes are nodes in a tree that are connected to a parent
noae

* Typically:
— Classes = children in the inheritance sense
— Objects = children in the tree sense

07/26/2006 EECS 12: Lecture 8 14
Mark E. Phair

| anbda functions

Al anbda function is a function object with no name

* You can pass it to anything that takes a function

>>> map(l anbda x: x*2, range(5))

[0, 2, 4, 6, 8]

>>> reduce(l anbda x,y: x+y, range(b))
10

07/26/2006 EECS 12: Lecture 8 15
Mark E. Phair

Let's explore

Using | anbda functions plus map and r educe, write a
single line of code that sums the squares of the numbers
inr ange(10)

Hint: the result should be 285

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

16

List comprehensions

The functionality of map and f I | t er can be expressed in
another way with list comprehensions

nLst
nLst
fLst
fLst

07/26/2006

map(fl, |st)

[f1(x) for x in |st]

filter(f2, |st)
[Xx for x In |st

EECS 12: Lecture 8
Mark E. Phair

i f f2(x)]

17

nf Lst
nf Lst

07/26/2006

List comprehensions:
combining functionality

map(fl, filter(f2,
[f1(x) for x 1n |st

EECS 12: Lecture 8
Mark E. Phair

| st))
I f f2(x)]

18

List comprehensions:
not just single functions, no need for | anbda

nfLst = [x**2 for x Iin |Ist I f x<b5)]

07/26/2006 EECS 12: Lecture 8 19
Mark E. Phair

Where you already could have used this...

return [self.val ue, \
[chil d. dunpToList() \

for child in \
sel f.children]]

07/26/2006 EECS 12: Lecture 8
Mark E. Phair

20

Python Factoid of the day: zi p

ZIp conbines two |ists together:
>>> zip([0,1,2], ['a,'b ,'c'])
[(O0, "a"), (1, "b"), (2, "¢c")
>>> | st = ['cow,'dog','cat']
>>> for 11,aninmal 1 n \

zi p(range(len(lst)), Ist):
orint 11, aninmal

0 cow
1 dog
2 cat

07/26/2006 EECS 12: Lecture 8 21
Mark E. Phair

